Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On the Complexity of Various Parameterizations of Common Induced Subgraph Isomorphism (1412.1261v2)

Published 3 Dec 2014 in cs.DS

Abstract: In the Maximum Common Induced Subgraph problem (henceforth MCIS), given two graphs $G_1$ and $G_2$, one looks for a graph with the maximum number of vertices being both an induced subgraph of $G_1$ and $G_2$. MCIS is among the most studied classical NP-hard problems. It remains NP-hard on many graph classes including forests. In this paper, we study the parameterized complexity of MCIS. As a generalization of \textsc{Clique}, it is W[1]-hard parameterized by the size of the solution. Being NP-hard even on forests, most structural parameterizations are intractable. One has to go as far as parameterizing by the size of the minimum vertex cover to get some tractability. Indeed, when parameterized by $k := \text{vc}(G_1)+\text{vc}(G_2)$ the sum of the vertex cover number of the two input graphs, the problem was shown to be fixed-parameter tractable, with an algorithm running in time $2{O(k \log k)}$. We complement this result by showing that, unless the ETH fails, it cannot be solved in time $2{o(k \log k)}$. This kind of tight lower bound has been shown for a few problems and parameters but, to the best of our knowledge, not for the vertex cover number. We also show that MCIS does not have a polynomial kernel when parameterized by $k$, unless $NP \subseteq \mathsf{coNP}/poly$. Finally, we study MCIS and its connected variant MCCIS on some special graph classes and with respect to other structural parameters.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.