Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Tiered Clustering to Improve Lexical Entailment (1412.0751v1)

Published 2 Dec 2014 in cs.CL

Abstract: Many tasks in Natural Language Processing involve recognizing lexical entailment. Two different approaches to this problem have been proposed recently that are quite different from each other. The first is an asymmetric similarity measure designed to give high scores when the contexts of the narrower term in the entailment are a subset of those of the broader term. The second is a supervised approach where a classifier is learned to predict entailment given a concatenated latent vector representation of the word. Both of these approaches are vector space models that use a single context vector as a representation of the word. In this work, I study the effects of clustering words into senses and using these multiple context vectors to infer entailment using extensions of these two algorithms. I find that this approach offers some improvement to these entailment algorithms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.