Papers
Topics
Authors
Recent
2000 character limit reached

Near Optimal LP Rounding Algorithm for Correlation Clustering on Complete and Complete k-partite Graphs (1412.0681v3)

Published 1 Dec 2014 in cs.DS

Abstract: We give new rounding schemes for the standard linear programming relaxation of the correlation clustering problem, achieving approximation factors almost matching the integrality gaps: - For complete graphs our appoximation is $2.06 - \varepsilon$ for a fixed constant $\varepsilon$, which almost matches the previously known integrality gap of $2$. - For complete $k$-partite graphs our approximation is $3$. We also show a matching integrality gap. - For complete graphs with edge weights satisfying triangle inequalities and probability constraints, our approximation is $1.5$, and we show an integrality gap of $1.2$. Our results improve a long line of work on approximation algorithms for correlation clustering in complete graphs, previously culminating in a ratio of $2.5$ for the complete case by Ailon, Charikar and Newman (JACM'08). In the weighted complete case satisfying triangle inequalities and probability constraints, the same authors give a $2$-approximation; for the bipartite case, Ailon, Avigdor-Elgrabli, Liberty and van Zuylen give a $4$-approximation (SICOMP'12).

Citations (113)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.