Papers
Topics
Authors
Recent
2000 character limit reached

Reconstruction of Randomly Sampled Sparse Signals Using an Adaptive Gradient Algorithm (1412.0624v2)

Published 1 Dec 2014 in cs.IT and math.IT

Abstract: Sparse signals can be recovered from a reduced set of samples by using compressive sensing algorithms. In common methods the signal is recovered in the sparse domain. A method for the reconstruction of sparse signal which reconstructs the remaining missing samples/measurements is recently proposed. The available samples are fixed, while the missing samples are considered as minimization variables. Recovery of missing samples/measurements is done using an adaptive gradient-based algorithm in the time domain. A new criterion for the parameter adaptation in this algorithm, based on the gradient direction angles, is proposed. It improves the algorithm computational efficiency. A theorem for the uniqueness of the recovered signal for given set of missing samples (reconstruction variables) is presented. The case when available samples are a random subset of a uniformly or nonuniformly sampled signal is considered in this paper. A recalculation procedure is used to reconstruct the nonuniformly sampled signal. The methods are illustrated on statistical examples.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.