Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Lifted Probabilistic Inference for Asymmetric Graphical Models (1412.0315v1)

Published 1 Dec 2014 in cs.AI

Abstract: Lifted probabilistic inference algorithms have been successfully applied to a large number of symmetric graphical models. Unfortunately, the majority of real-world graphical models is asymmetric. This is even the case for relational representations when evidence is given. Therefore, more recent work in the community moved to making the models symmetric and then applying existing lifted inference algorithms. However, this approach has two shortcomings. First, all existing over-symmetric approximations require a relational representation such as Markov logic networks. Second, the induced symmetries often change the distribution significantly, making the computed probabilities highly biased. We present a framework for probabilistic sampling-based inference that only uses the induced approximate symmetries to propose steps in a Metropolis-Hastings style Markov chain. The framework, therefore, leads to improved probability estimates while remaining unbiased. Experiments demonstrate that the approach outperforms existing MCMC algorithms.

Citations (36)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.