Papers
Topics
Authors
Recent
2000 character limit reached

Magic coins are useful for small-space quantum machines (1411.7647v1)

Published 27 Nov 2014 in cs.CC, cs.FL, and quant-ph

Abstract: Although polynomial-time probabilistic Turing machines can utilize uncomputable transition probabilities to recognize uncountably many languages with bounded error when allowed to use logarithmic space, it is known that such "magic coins" give no additional computational power to constant-space versions of those machines. We show that adding a few quantum bits to the model changes the picture dramatically. For every language $L$, there exists such a two-way quantum finite automaton that recognizes a language of the same Turing degree as $L$ with bounded error in polynomial time. When used as verifiers in public-coin interactive proof systems, such automata can verify membership in all languages with bounded error, outperforming their classical counterparts, which are known to fail for the palindromes language.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.