Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A note relating ridge regression and OLS p-values to preconditioned sparse penalized regression (1411.7405v2)

Published 26 Nov 2014 in stat.ML and stat.ME

Abstract: When the design matrix has orthonormal columns, "soft thresholding" the ordinary least squares (OLS) solution produces the Lasso solution [Tibshirani, 1996]. If one uses the Puffer preconditioned Lasso [Jia and Rohe, 2012], then this result generalizes from orthonormal designs to full rank designs (Theorem 1). Theorem 2 refines the Puffer preconditioner to make the Lasso select the same model as removing the elements of the OLS solution with the largest p-values. Using a generalized Puffer preconditioner, Theorem 3 relates ridge regression to the preconditioned Lasso; this result is for the high dimensional setting, p > n. Where the standard Lasso is akin to forward selection [Efron et al., 2004], Theorems 1, 2, and 3 suggest that the preconditioned Lasso is more akin to backward elimination. These results hold for sparse penalties beyond l1; for a broad class of sparse and non-convex techniques (e.g. SCAD and MC+), the results hold for all local minima.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.