Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Kernelization Algorithms for Packing Problems Allowing Overlaps (Extended Version) (1411.6915v3)

Published 25 Nov 2014 in cs.DS

Abstract: We consider the problem of discovering overlapping communities in networks which we model as generalizations of Graph Packing problems with overlap. We seek a collection $\mathcal{S}' \subseteq \mathcal{S}$ consisting of at least $k$ sets subject to certain disjointness restrictions. In the $r$-Set Packing with $t$-Membership, each element of $\mathcal{U}$ belongs to at most $t$ sets of $\mathcal{S'}$ while in $t$-Overlap each pair of sets in $\mathcal{S'}$ overlaps in at most $t$ elements. Each set of $\mathcal{S}$ has at most $r$ elements. Similarly, both of our graph packing problems seek a collection $\mathcal{K}$ of at least $k$ subgraphs in a graph $G$ each isomorphic to a graph $H \in \mathcal{H}$. In $\mathcal{H}$-Packing with $t$-Membership, each vertex of $G$ belongs to at most $t$ subgraphs of $\mathcal{K}$ while in $t$-Overlap each pair of subgraphs in $\mathcal{K}$ overlaps in at most $t$ vertices. Each member of $\mathcal{H}$ has at most $r$ vertices and $m$ edges. We show NP-Completeness results for all of our packing problems and we give a dichotomy result for the $\mathcal{H}$-Packing with $t$-Membership problem analogous to the Kirkpatrick and Hell \cite{Kirk78}. We reduce the $r$-Set Packing with $t$-Membership to a problem kernel with $O((r+1)r k{r})$ elements while we achieve a kernel with $O(rr k{r-t-1})$ elements for the $r$-Set Packing with $t$-Overlap. In addition, we reduce the $\mathcal{H}$-Packing with $t$-Membership and its edge version to problem kernels with $O((r+1)r k{r})$ and $O((m+1){m} k{{m}})$ vertices, respectively. On the other hand, we achieve kernels with $O(rr k{r-t-1})$ and $O(m{m} k{m-t-1})$ vertices for the $\mathcal{H}$-Packing with $t$-Overlap and its edge version, respectively. In all cases, $k$ is the input parameter while $t$, $r$, and $m$ are constants.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.