Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Kernelization Algorithms for Packing Problems Allowing Overlaps (Extended Version) (1411.6915v3)

Published 25 Nov 2014 in cs.DS

Abstract: We consider the problem of discovering overlapping communities in networks which we model as generalizations of Graph Packing problems with overlap. We seek a collection $\mathcal{S}' \subseteq \mathcal{S}$ consisting of at least $k$ sets subject to certain disjointness restrictions. In the $r$-Set Packing with $t$-Membership, each element of $\mathcal{U}$ belongs to at most $t$ sets of $\mathcal{S'}$ while in $t$-Overlap each pair of sets in $\mathcal{S'}$ overlaps in at most $t$ elements. Each set of $\mathcal{S}$ has at most $r$ elements. Similarly, both of our graph packing problems seek a collection $\mathcal{K}$ of at least $k$ subgraphs in a graph $G$ each isomorphic to a graph $H \in \mathcal{H}$. In $\mathcal{H}$-Packing with $t$-Membership, each vertex of $G$ belongs to at most $t$ subgraphs of $\mathcal{K}$ while in $t$-Overlap each pair of subgraphs in $\mathcal{K}$ overlaps in at most $t$ vertices. Each member of $\mathcal{H}$ has at most $r$ vertices and $m$ edges. We show NP-Completeness results for all of our packing problems and we give a dichotomy result for the $\mathcal{H}$-Packing with $t$-Membership problem analogous to the Kirkpatrick and Hell \cite{Kirk78}. We reduce the $r$-Set Packing with $t$-Membership to a problem kernel with $O((r+1)r k{r})$ elements while we achieve a kernel with $O(rr k{r-t-1})$ elements for the $r$-Set Packing with $t$-Overlap. In addition, we reduce the $\mathcal{H}$-Packing with $t$-Membership and its edge version to problem kernels with $O((r+1)r k{r})$ and $O((m+1){m} k{{m}})$ vertices, respectively. On the other hand, we achieve kernels with $O(rr k{r-t-1})$ and $O(m{m} k{m-t-1})$ vertices for the $\mathcal{H}$-Packing with $t$-Overlap and its edge version, respectively. In all cases, $k$ is the input parameter while $t$, $r$, and $m$ are constants.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.