Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 113 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Efficiently listing bounded length st-paths (1411.6852v1)

Published 25 Nov 2014 in cs.DS

Abstract: The problem of listing the $K$ shortest simple (loopless) $st$-paths in a graph has been studied since the early 1960s. For a non-negatively weighted graph with $n$ vertices and $m$ edges, the most efficient solution is an $O(K(mn + n2 \log n))$ algorithm for directed graphs by Yen and Lawler [Management Science, 1971 and 1972], and an $O(K(m+n \log n))$ algorithm for the undirected version by Katoh et al. [Networks, 1982], both using $O(Kn + m)$ space. In this work, we consider a different parameterization for this problem: instead of bounding the number of $st$-paths output, we bound their length. For the bounded length parameterization, we propose new non-trivial algorithms matching the time complexity of the classic algorithms but using only $O(m+n)$ space. Moreover, we provide a unified framework such that the solutions to both parameterizations -- the classic $K$-shortest and the new length-bounded paths -- can be seen as two different traversals of a same tree, a Dijkstra-like and a DFS-like traversal, respectively.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube