Discretization of Planar Geometric Cover Problems (1411.6810v1)
Abstract: We consider discretization of the 'geometric cover problem' in the plane: Given a set $P$ of $n$ points in the plane and a compact planar object $T_0$, find a minimum cardinality collection of planar translates of $T_0$ such that the union of the translates in the collection contains all the points in $P$. We show that the geometric cover problem can be converted to a form of the geometric set cover, which has a given finite-size collection of translates rather than the infinite continuous solution space of the former. We propose a reduced finite solution space that consists of distinct canonical translates and present polynomial algorithms to find the reduce solution space for disks, convex/non-convex polygons (including holes), and planar objects consisting of finite Jordan curves.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.