Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

One Vector is Not Enough: Entity-Augmented Distributional Semantics for Discourse Relations (1411.6699v1)

Published 25 Nov 2014 in cs.CL and cs.LG

Abstract: Discourse relations bind smaller linguistic units into coherent texts. However, automatically identifying discourse relations is difficult, because it requires understanding the semantics of the linked arguments. A more subtle challenge is that it is not enough to represent the meaning of each argument of a discourse relation, because the relation may depend on links between lower-level components, such as entity mentions. Our solution computes distributional meaning representations by composition up the syntactic parse tree. A key difference from previous work on compositional distributional semantics is that we also compute representations for entity mentions, using a novel downward compositional pass. Discourse relations are predicted from the distributional representations of the arguments, and also of their coreferent entity mentions. The resulting system obtains substantial improvements over the previous state-of-the-art in predicting implicit discourse relations in the Penn Discourse Treebank.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube