Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the High-dimensional Power of Linear-time Kernel Two-Sample Testing under Mean-difference Alternatives (1411.6314v1)

Published 23 Nov 2014 in math.ST, cs.AI, cs.IT, cs.LG, math.IT, stat.ML, and stat.TH

Abstract: Nonparametric two sample testing deals with the question of consistently deciding if two distributions are different, given samples from both, without making any parametric assumptions about the form of the distributions. The current literature is split into two kinds of tests - those which are consistent without any assumptions about how the distributions may differ (\textit{general} alternatives), and those which are designed to specifically test easier alternatives, like a difference in means (\textit{mean-shift} alternatives). The main contribution of this paper is to explicitly characterize the power of a popular nonparametric two sample test, designed for general alternatives, under a mean-shift alternative in the high-dimensional setting. Specifically, we explicitly derive the power of the linear-time Maximum Mean Discrepancy statistic using the Gaussian kernel, where the dimension and sample size can both tend to infinity at any rate, and the two distributions differ in their means. As a corollary, we find that if the signal-to-noise ratio is held constant, then the test's power goes to one if the number of samples increases faster than the dimension increases. This is the first explicit power derivation for a general nonparametric test in the high-dimensional setting, and also the first analysis of how tests designed for general alternatives perform when faced with easier ones.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.