Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Optimal variable selection in multi-group sparse discriminant analysis (1411.6311v1)

Published 23 Nov 2014 in stat.ML

Abstract: This article considers the problem of multi-group classification in the setting where the number of variables $p$ is larger than the number of observations $n$. Several methods have been proposed in the literature that address this problem, however their variable selection performance is either unknown or suboptimal to the results known in the two-group case. In this work we provide sharp conditions for the consistent recovery of relevant variables in the multi-group case using the discriminant analysis proposal of Gaynanova et al., 2014. We achieve the rates of convergence that attain the optimal scaling of the sample size $n$, number of variables $p$ and the sparsity level $s$. These rates are significantly faster than the best known results in the multi-group case. Moreover, they coincide with the optimal minimax rates for the two-group case. We validate our theoretical results with numerical analysis.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.