Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discrete Bayesian Networks: The Exact Posterior Marginal Distributions (1411.6300v1)

Published 23 Nov 2014 in cs.AI

Abstract: In a Bayesian network, we wish to evaluate the marginal probability of a query variable, which may be conditioned on the observed values of some evidence variables. Here we first present our "border algorithm," which converts a BN into a directed chain. For the polytrees, we then present in details, with some modifications and within the border algorithm framework, the "revised polytree algorithm" by Peot & Shachter (1991). Finally, we present our "parentless polytree method," which, coupled with the border algorithm, converts any Bayesian network into a polytree, rendering the complexity of our inferences independent of the size of network, and linear with the number of its evidence and query variables. All quantities in this paper have probabilistic interpretations.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)