Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 108 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 205 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Testing for high-dimensional geometry in random graphs (1411.5713v2)

Published 20 Nov 2014 in math.ST, cs.SI, math.PR, and stat.TH

Abstract: We study the problem of detecting the presence of an underlying high-dimensional geometric structure in a random graph. Under the null hypothesis, the observed graph is a realization of an Erd\H{o}s-R\'enyi random graph $G(n,p)$. Under the alternative, the graph is generated from the $G(n,p,d)$ model, where each vertex corresponds to a latent independent random vector uniformly distributed on the sphere $\mathbb{S}{d-1}$, and two vertices are connected if the corresponding latent vectors are close enough. In the dense regime (i.e., $p$ is a constant), we propose a near-optimal and computationally efficient testing procedure based on a new quantity which we call signed triangles. The proof of the detection lower bound is based on a new bound on the total variation distance between a Wishart matrix and an appropriately normalized GOE matrix. In the sparse regime, we make a conjecture for the optimal detection boundary. We conclude the paper with some preliminary steps on the problem of estimating the dimension in $G(n,p,d)$.

Citations (125)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.