Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Speed Partitioning for Indexing Moving Objects (1411.4940v2)

Published 18 Nov 2014 in cs.DB

Abstract: Indexing moving objects has been extensively studied in the past decades. Moving objects, such as vehicles and mobile device users, usually exhibit some patterns on their velocities, which can be utilized for velocity-based partitioning to improve performance of the indexes. Existing velocity-based partitioning techniques rely on some kinds of heuristics rather than analytically calculate the optimal solution. In this paper, we propose a novel speed partitioning technique based on a formal analysis over speed values of the moving objects. We first show that speed partitioning will significantly reduce the search space expansion which has direct impacts on query performance of the indexes. Next we formulate the optimal speed partitioning problem based on search space expansion analysis and then compute the optimal solution using dynamic programming. We then build the partitioned indexing system where queries are duplicated and processed in each index partition. Extensive experiments demonstrate that our method dramatically improves the performance of indexes for moving objects and outperforms other state-of-the-art velocity-based partitioning approaches.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube