Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Kernelization and Sparseness: the case of Dominating Set (1411.4575v2)

Published 17 Nov 2014 in cs.DS

Abstract: We prove that for every positive integer $r$ and for every graph class $\mathcal G$ of bounded expansion, the $r$-Dominating Set problem admits a linear kernel on graphs from $\mathcal G$. Moreover, when $\mathcal G$ is only assumed to be nowhere dense, then we give an almost linear kernel on $\mathcal G$ for the classic Dominating Set problem, i.e., for the case $r=1$. These results generalize a line of previous research on finding linear kernels for Dominating Set and $r$-Dominating Set. However, the approach taken in this work, which is based on the theory of sparse graphs, is radically different and conceptually much simpler than the previous approaches. We complement our findings by showing that for the closely related Connected Dominating Set problem, the existence of such kernelization algorithms is unlikely, even though the problem is known to admit a linear kernel on $H$-topological-minor-free graphs. Also, we prove that for any somewhere dense class $\mathcal G$, there is some $r$ for which $r$-Dominating Set is W[$2$]-hard on $\mathcal G$. Thus, our results fall short of proving a sharp dichotomy for the parameterized complexity of $r$-Dominating Set on subgraph-monotone graph classes: we conjecture that the border of tractability lies exactly between nowhere dense and somewhere dense graph classes.

Citations (55)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.