Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 126 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Decremental All-Pairs ALL Shortest Paths and Betweenness Centrality (1411.4073v1)

Published 14 Nov 2014 in cs.DS

Abstract: We consider the all pairs all shortest paths (APASP) problem, which maintains the shortest path dag rooted at every vertex in a directed graph G=(V,E) with positive edge weights. For this problem we present a decremental algorithm (that supports the deletion of a vertex, or weight increases on edges incident to a vertex). Our algorithm runs in amortized O(\vstar2 \cdot \log n) time per update, where n=|V|, and \vstar bounds the number of edges that lie on shortest paths through any given vertex. Our APASP algorithm can be used for the decremental computation of betweenness centrality (BC), a graph parameter that is widely used in the analysis of large complex networks. No nontrivial decremental algorithm for either problem was known prior to our work. Our method is a generalization of the decremental algorithm of Demetrescu and Italiano [DI04] for unique shortest paths, and for graphs with \vstar =O(n), we match the bound in [DI04]. Thus for graphs with a constant number of shortest paths between any pair of vertices, our algorithm maintains APASP and BC scores in amortized time O(n2 \log n) under decremental updates, regardless of the number of edges in the graph.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube