Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Experimental Evaluation of Performance of A Hadoop Cluster on Replica Management (1411.1931v1)

Published 7 Nov 2014 in cs.DC

Abstract: Hadoop is an open source implementation of the MapReduce Framework in the realm of distributed processing. A Hadoop cluster is a unique type of computational cluster designed for storing and analyzing large data sets across cluster of workstations. To handle massive scale data, Hadoop exploits the Hadoop Distributed File System termed as HDFS. The HDFS similar to most distributed file systems share a familiar problem on data sharing and availability among compute nodes, often which leads to decrease in performance. This paper is an experimental evaluation of Hadoop's computing performance which is made by designing a rack aware cluster that utilizes the Hadoop's default block placement policy to improve data availability. Additionally, an adaptive data replication scheme that relies on access count prediction using Langrange's interpolation is adapted to fit the scenario. To prove, experiments were conducted on a rack aware cluster setup which significantly reduced the task completion time, but once the volume of the data being processed increases there is a considerable cutback in computational speeds due to update cost. Further the threshold level for balance between the update cost and replication factor is identified and presented graphically.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube