Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Metric and non-metric proximity transformations at linear costs (1411.1646v1)

Published 6 Nov 2014 in cs.DS

Abstract: Domain specific (dis-)similarity or proximity measures used e.g. in alignment algorithms of sequence data, are popular to analyze complex data objects and to cover domain specific data properties. Without an underlying vector space these data are given as pairwise (dis-)similarities only. The few available methods for such data focus widely on similarities and do not scale to large data sets. Kernel methods are very effective for metric similarity matrices, also at large scale, but costly transformations are necessary starting with non-metric (dis-) similarities. We propose an integrative combination of Nystroem approximation, potential double centering and eigenvalue correction to obtain valid kernel matrices at linear costs in the number of samples. By the proposed approach effective kernel approaches, become accessible. Experiments with several larger (dis-)similarity data sets show that the proposed method achieves much better runtime performance than the standard strategy while keeping competitive model accuracy. The main contribution is an efficient and accurate technique, to convert (potentially non-metric) large scale dissimilarity matrices into approximated positive semi-definite kernel matrices at linear costs.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.