Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Minimax Estimation of Discrete Distributions under $\ell_1$ Loss (1411.1467v3)

Published 6 Nov 2014 in cs.IT and math.IT

Abstract: We analyze the problem of discrete distribution estimation under $\ell_1$ loss. We provide non-asymptotic upper and lower bounds on the maximum risk of the empirical distribution (the maximum likelihood estimator), and the minimax risk in regimes where the alphabet size $S$ may grow with the number of observations $n$. We show that among distributions with bounded entropy $H$, the asymptotic maximum risk for the empirical distribution is $2H/\ln n$, while the asymptotic minimax risk is $H/\ln n$. Moreover, Moreover, we show that a hard-thresholding estimator oblivious to the unknown upper bound $H$, is asymptotically minimax. However, if we constrain the estimates to lie in the simplex of probability distributions, then the asymptotic minimax risk is again $2H/\ln n$. We draw connections between our work and the literature on density estimation, entropy estimation, total variation distance ($\ell_1$ divergence) estimation, joint distribution estimation in stochastic processes, normal mean estimation, and adaptive estimation.

Citations (46)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.