Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

The Value of Knowing Your Enemy (1411.1379v1)

Published 5 Nov 2014 in cs.GT

Abstract: Many auction settings implicitly or explicitly require that bidders are treated equally ex-ante. This may be because discrimination is philosophically or legally impermissible, or because it is practically difficult to implement or impossible to enforce. We study so-called {\em anonymous} auctions to understand the revenue tradeoffs and to develop simple anonymous auctions that are approximately optimal. We consider digital goods settings and show that the optimal anonymous, dominant strategy incentive compatible auction has an intuitive structure --- imagine that bidders are randomly permuted before the auction, then infer a posterior belief about bidder i's valuation from the values of other bidders and set a posted price that maximizes revenue given this posterior. We prove that no anonymous mechanism can guarantee an approximation better than O(n) to the optimal revenue in the worst case (or O(log n) for regular distributions) and that even posted price mechanisms match those guarantees. Understanding that the real power of anonymous mechanisms comes when the auctioneer can infer the bidder identities accurately, we show a tight O(k) approximation guarantee when each bidder can be confused with at most k "higher types". Moreover, we introduce a simple mechanism based on n target prices that is asymptotically optimal and build on this mechanism to extend our results to m-unit auctions and sponsored search.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.