Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On the Complexity of Learning with Kernels (1411.1158v1)

Published 5 Nov 2014 in cs.LG and stat.ML

Abstract: A well-recognized limitation of kernel learning is the requirement to handle a kernel matrix, whose size is quadratic in the number of training examples. Many methods have been proposed to reduce this computational cost, mostly by using a subset of the kernel matrix entries, or some form of low-rank matrix approximation, or a random projection method. In this paper, we study lower bounds on the error attainable by such methods as a function of the number of entries observed in the kernel matrix or the rank of an approximate kernel matrix. We show that there are kernel learning problems where no such method will lead to non-trivial computational savings. Our results also quantify how the problem difficulty depends on parameters such as the nature of the loss function, the regularization parameter, the norm of the desired predictor, and the kernel matrix rank. Our results also suggest cases where more efficient kernel learning might be possible.

Citations (36)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.