Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CUR Algorithm for Partially Observed Matrices (1411.0860v1)

Published 4 Nov 2014 in cs.LG

Abstract: CUR matrix decomposition computes the low rank approximation of a given matrix by using the actual rows and columns of the matrix. It has been a very useful tool for handling large matrices. One limitation with the existing algorithms for CUR matrix decomposition is that they need an access to the {\it full} matrix, a requirement that can be difficult to fulfill in many real world applications. In this work, we alleviate this limitation by developing a CUR decomposition algorithm for partially observed matrices. In particular, the proposed algorithm computes the low rank approximation of the target matrix based on (i) the randomly sampled rows and columns, and (ii) a subset of observed entries that are randomly sampled from the matrix. Our analysis shows the relative error bound, measured by spectral norm, for the proposed algorithm when the target matrix is of full rank. We also show that only $O(n r\ln r)$ observed entries are needed by the proposed algorithm to perfectly recover a rank $r$ matrix of size $n\times n$, which improves the sample complexity of the existing algorithms for matrix completion. Empirical studies on both synthetic and real-world datasets verify our theoretical claims and demonstrate the effectiveness of the proposed algorithm.

Citations (33)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.