Emergent Mind

Abstract

Crowdsourcing has been part of the IR toolbox as a cheap and fast mechanism to obtain labels for system development and evaluation. Successful deployment of crowdsourcing at scale involves adjusting many variables, a very important one being the number of workers needed per human intelligence task (HIT). We consider the crowdsourcing task of learning the answer to simple multiple-choice HITs, which are representative of many relevance experiments. In order to provide statistically significant results, one often needs to ask multiple workers to answer the same HIT. A stopping rule is an algorithm that, given a HIT, decides for any given set of worker answers if the system should stop and output an answer or iterate and ask one more worker. Knowing the historic performance of a worker in the form of a quality score can be beneficial in such a scenario. In this paper we investigate how to devise better stopping rules given such quality scores. We also suggest adaptive exploration as a promising approach for scalable and automatic creation of ground truth. We conduct a data analysis on an industrial crowdsourcing platform, and use the observations from this analysis to design new stopping rules that use the workers' quality scores in a non-trivial manner. We then perform a simulation based on a real-world workload, showing that our algorithm performs better than the more naive approaches.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.