On Kernelization and Approximation for the Vector Connectivity Problem (1410.8819v2)
Abstract: In the Vector Connectivity problem we are given an undirected graph $G=(V,E)$, a demand function $\phi\colon V\to{0,\ldots,d}$, and an integer $k$. The question is whether there exists a set $S$ of at most $k$ vertices such that every vertex $v\in V\setminus S$ has at least $\phi(v)$ vertex-disjoint paths to $S$; this abstractly captures questions about placing servers or warehouses relative to demands. The problem is \NP-hard already for instances with $d=4$ (Cicalese et al., arXiv '14), admits a log-factor approximation (Boros et al., Networks '14), and is fixed-parameter tractable in terms of~$k$ (Lokshtanov, unpublished '14). We prove several results regarding kernelization and approximation for Vector Connectivity and the variant Vector $d$-Connectivity where the upper bound $d$ on demands is a fixed constant. For Vector $d$-Connectivity we give a factor $d$-approximation algorithm and construct a vertex-linear kernelization, i.e., an efficient reduction to an equivalent instance with $f(d)k=O(k)$ vertices. For Vector Connectivity we have a factor $\text{opt}$-approximation and we can show that it has no kernelization to size polynomial in $k$ or even $k+d$ unless $\mathsf{NP\subseteq coNP/poly}$, making $f(d)\operatorname{poly}(k)$ optimal for Vector $d$-Connectivity. Finally, we provide a write-up for fixed-parameter tractability of Vector Connectivity($k$) by giving an alternative FPT algorithm based on matroid intersection.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.