Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Experiments to Improve Named Entity Recognition on Turkish Tweets (1410.8668v1)

Published 31 Oct 2014 in cs.CL

Abstract: Social media texts are significant information sources for several application areas including trend analysis, event monitoring, and opinion mining. Unfortunately, existing solutions for tasks such as named entity recognition that perform well on formal texts usually perform poorly when applied to social media texts. In this paper, we report on experiments that have the purpose of improving named entity recognition on Turkish tweets, using two different annotated data sets. In these experiments, starting with a baseline named entity recognition system, we adapt its recognition rules and resources to better fit Twitter language by relaxing its capitalization constraint and by diacritics-based expansion of its lexical resources, and we employ a simplistic normalization scheme on tweets to observe the effects of these on the overall named entity recognition performance on Turkish tweets. The evaluation results of the system with these different settings are provided with discussions of these results.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Dilek Küçük (17 papers)
  2. Ralf Steinberger (21 papers)
Citations (43)

Summary

We haven't generated a summary for this paper yet.