Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

Latent Feature Based FM Model For Rating Prediction (1410.8034v1)

Published 29 Oct 2014 in cs.LG, cs.IR, and stat.ML

Abstract: Rating Prediction is a basic problem in Recommender System, and one of the most widely used method is Factorization Machines(FM). However, traditional matrix factorization methods fail to utilize the benefit of implicit feedback, which has been proved to be important in Rating Prediction problem. In this work, we consider a specific situation, movie rating prediction, where we assume that watching history has a big influence on his/her rating behavior on an item. We introduce two models, Latent Dirichlet Allocation(LDA) and word2vec, both of which perform state-of-the-art results in training latent features. Based on that, we propose two feature based models. One is the Topic-based FM Model which provides the implicit feedback to the matrix factorization. The other is the Vector-based FM Model which expresses the order info of watching history. Empirical results on three datasets demonstrate that our method performs better than the baseline model and confirm that Vector-based FM Model usually works better as it contains the order info.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.