Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On Sparse Vector Recovery Performance in Structurally Orthogonal Matrices via LASSO (1410.7295v2)

Published 27 Oct 2014 in cs.IT and math.IT

Abstract: In this paper, we consider a compressed sensing problem of reconstructing a sparse signal from an undersampled set of noisy linear measurements. The regularized least squares or least absolute shrinkage and selection operator (LASSO) formulation is used for signal estimation. The measurement matrix is assumed to be constructed by concatenating several randomly orthogonal bases, referred to as structurally orthogonal matrices. Such measurement matrix is highly relevant to large-scale compressive sensing applications because it facilitates fast computation and also supports parallel processing. Using the replica method from statistical physics, we derive the mean-squared-error (MSE) formula of reconstruction over the structurally orthogonal matrix in the large-system regime. Extensive numerical experiments are provided to verify the analytical result. We then use the analytical result to study the MSE behaviors of LASSO over the structurally orthogonal matrix, with a particular focus on performance comparisons to matrices with independent and identically distributed (i.i.d.) Gaussian entries. We demonstrate that the structurally orthogonal matrices are at least as well performed as their i.i.d. Gaussian counterparts, and therefore the use of structurally orthogonal matrices is highly motivated in practical applications.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.