Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Symmetric bilinear forms over finite fields with applications to coding theory (1410.7184v1)

Published 27 Oct 2014 in math.CO, cs.IT, and math.IT

Abstract: Let $q$ be an odd prime power and let $X(m,q)$ be the set of symmetric bilinear forms on an $m$-dimensional vector space over $\mathbb{F}_q$. The partition of $X(m,q)$ induced by the action of the general linear group gives rise to a commutative translation association scheme. We give explicit expressions for the eigenvalues of this scheme in terms of linear combinations of generalised Krawtchouk polynomials. We then study $d$-codes in this scheme, namely subsets $Y$ of $X(m,q)$ with the property that, for all distinct $A,B\in Y$, the rank of $A-B$ is at least $d$. We prove bounds on the size of a $d$-code and show that, under certain conditions, the inner distribution of a $d$-code is determined by its parameters. Constructions of $d$-codes are given, which are optimal among the $d$-codes that are subgroups of $X(m,q)$. Finally, with every subset $Y$ of $X(m,q)$, we associate two classical codes over $\mathbb{F}_q$ and show that their Hamming distance enumerators can be expressed in terms of the inner distribution of $Y$. As an example, we obtain the distance enumerators of certain cyclic codes, for which many special cases have been previously obtained using long ad hoc calculations.

Citations (41)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)