Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Aggregation Method for Sparse Logistic Regression (1410.6959v2)

Published 25 Oct 2014 in stat.ML

Abstract: $L_1$ regularized logistic regression has now become a workhorse of data mining and bioinformatics: it is widely used for many classification problems, particularly ones with many features. However, $L_1$ regularization typically selects too many features and that so-called false positives are unavoidable. In this paper, we demonstrate and analyze an aggregation method for sparse logistic regression in high dimensions. This approach linearly combines the estimators from a suitable set of logistic models with different underlying sparsity patterns and can balance the predictive ability and model interpretability. Numerical performance of our proposed aggregation method is then investigated using simulation studies. We also analyze a published genome-wide case-control dataset to further evaluate the usefulness of the aggregation method in multilocus association mapping.

Summary

We haven't generated a summary for this paper yet.