Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

An Aggregation Method for Sparse Logistic Regression (1410.6959v2)

Published 25 Oct 2014 in stat.ML

Abstract: $L_1$ regularized logistic regression has now become a workhorse of data mining and bioinformatics: it is widely used for many classification problems, particularly ones with many features. However, $L_1$ regularization typically selects too many features and that so-called false positives are unavoidable. In this paper, we demonstrate and analyze an aggregation method for sparse logistic regression in high dimensions. This approach linearly combines the estimators from a suitable set of logistic models with different underlying sparsity patterns and can balance the predictive ability and model interpretability. Numerical performance of our proposed aggregation method is then investigated using simulation studies. We also analyze a published genome-wide case-control dataset to further evaluate the usefulness of the aggregation method in multilocus association mapping.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)