Papers
Topics
Authors
Recent
2000 character limit reached

Justifying the small-world phenomenon via random recursive trees (1410.6397v1)

Published 23 Oct 2014 in cs.DM, cs.SI, and math.CO

Abstract: We present a new technique for proving logarithmic upper bounds for diameters of evolving random graph models, which is based on defining a coupling between random graphs and variants of random recursive trees. The advantage of the technique is three-fold: it is quite simple and provides short proofs, it is applicable to a broad variety of models including those incorporating preferential attachment, and it provides bounds with small constants. We illustrate this by proving, for the first time, logarithmic upper bounds for the diameters of the following well known models: the forest fire model, the copying model, the PageRank-based selection model, the Aiello-Chung-Lu models, the generalized linear preference model, directed scale-free graphs, the Cooper-Frieze model, and random unordered increasing $k$-trees. Our results shed light on why the small-world phenomenon is observed in so many real-world graphs.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.