Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Generalized Compression Dictionary Distance as Universal Similarity Measure (1410.5792v1)

Published 21 Oct 2014 in stat.ML, cs.AI, cs.CC, cs.IT, and math.IT

Abstract: We present a new similarity measure based on information theoretic measures which is superior than Normalized Compression Distance for clustering problems and inherits the useful properties of conditional Kolmogorov complexity. We show that Normalized Compression Dictionary Size and Normalized Compression Dictionary Entropy are computationally more efficient, as the need to perform the compression itself is eliminated. Also they scale linearly with exponential vector size growth and are content independent. We show that normalized compression dictionary distance is compressor independent, if limited to lossless compressors, which gives space for optimizations and implementation speed improvement for real-time and big data applications. The introduced measure is applicable for machine learning tasks of parameter-free unsupervised clustering, supervised learning such as classification and regression, feature selection, and is applicable for big data problems with order of magnitude speed increase.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.