Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Regularizing Recurrent Networks - On Injected Noise and Norm-based Methods (1410.5684v1)

Published 21 Oct 2014 in stat.ML and cs.LG

Abstract: Advancements in parallel processing have lead to a surge in multilayer perceptrons' (MLP) applications and deep learning in the past decades. Recurrent Neural Networks (RNNs) give additional representational power to feedforward MLPs by providing a way to treat sequential data. However, RNNs are hard to train using conventional error backpropagation methods because of the difficulty in relating inputs over many time-steps. Regularization approaches from MLP sphere, like dropout and noisy weight training, have been insufficiently applied and tested on simple RNNs. Moreover, solutions have been proposed to improve convergence in RNNs but not enough to improve the long term dependency remembering capabilities thereof. In this study, we aim to empirically evaluate the remembering and generalization ability of RNNs on polyphonic musical datasets. The models are trained with injected noise, random dropout, norm-based regularizers and their respective performances compared to well-initialized plain RNNs and advanced regularization methods like fast-dropout. We conclude with evidence that training with noise does not improve performance as conjectured by a few works in RNN optimization before ours.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube