Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS) (1410.5410v2)

Published 20 Oct 2014 in stat.ML, cs.DS, cs.IR, and cs.LG

Abstract: Recently it was shown that the problem of Maximum Inner Product Search (MIPS) is efficient and it admits provably sub-linear hashing algorithms. Asymmetric transformations before hashing were the key in solving MIPS which was otherwise hard. In the prior work, the authors use asymmetric transformations which convert the problem of approximate MIPS into the problem of approximate near neighbor search which can be efficiently solved using hashing. In this work, we provide a different transformation which converts the problem of approximate MIPS into the problem of approximate cosine similarity search which can be efficiently solved using signed random projections. Theoretical analysis show that the new scheme is significantly better than the original scheme for MIPS. Experimental evaluations strongly support the theoretical findings.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.