Papers
Topics
Authors
Recent
2000 character limit reached

Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS) (1410.5410v2)

Published 20 Oct 2014 in stat.ML, cs.DS, cs.IR, and cs.LG

Abstract: Recently it was shown that the problem of Maximum Inner Product Search (MIPS) is efficient and it admits provably sub-linear hashing algorithms. Asymmetric transformations before hashing were the key in solving MIPS which was otherwise hard. In the prior work, the authors use asymmetric transformations which convert the problem of approximate MIPS into the problem of approximate near neighbor search which can be efficiently solved using hashing. In this work, we provide a different transformation which converts the problem of approximate MIPS into the problem of approximate cosine similarity search which can be efficiently solved using signed random projections. Theoretical analysis show that the new scheme is significantly better than the original scheme for MIPS. Experimental evaluations strongly support the theoretical findings.

Citations (102)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.