Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unrestricted Termination and Non-Termination Arguments for Bit-Vector Programs (1410.5089v1)

Published 19 Oct 2014 in cs.LO

Abstract: Proving program termination is typically done by finding a well-founded ranking function for the program states. Existing termination provers typically find ranking functions using either linear algebra or templates. As such they are often restricted to finding linear ranking functions over mathematical integers. This class of functions is insufficient for proving termination of many terminating programs, and furthermore a termination argument for a program operating on mathematical integers does not always lead to a termination argument for the same program operating on fixed-width machine integers. We propose a termination analysis able to generate nonlinear, lexicographic ranking functions and nonlinear recurrence sets that are correct for fixed-width machine arithmetic and floating-point arithmetic Our technique is based on a reduction from program \emph{termination} to second-order \emph{satisfaction}. We provide formulations for termination and non-termination in a fragment of second-order logic with restricted quantification which is decidable over finite domains. The resulted technique is a sound and complete analysis for the termination of finite-state programs with fixed-width integers and IEEE floating-point arithmetic.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.