Percentile Queries in Multi-Dimensional Markov Decision Processes (1410.4801v3)
Abstract: Markov decision processes (MDPs) with multi-dimensional weights are useful to analyze systems with multiple objectives that may be conflicting and require the analysis of trade-offs. We study the complexity of percentile queries in such MDPs and give algorithms to synthesize strategies that enforce such constraints. Given a multi-dimensional weighted MDP and a quantitative payoff function $f$, thresholds $v_i$ (one per dimension), and probability thresholds $\alpha_i$, we show how to compute a single strategy to enforce that for all dimensions $i$, the probability of outcomes $\rho$ satisfying $f_i(\rho) \geq v_i$ is at least $\alpha_i$. We consider classical quantitative payoffs from the literature (sup, inf, lim sup, lim inf, mean-payoff, truncated sum, discounted sum). Our work extends to the quantitative case the multi-objective model checking problem studied by Etessami et al. in unweighted MDPs.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.