Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Map Matching based on Conditional Random Fields and Route Preference Mining for Uncertain Trajectories (1410.4461v2)

Published 16 Oct 2014 in cs.NI and cs.LG

Abstract: In order to improve offline map matching accuracy of low-sampling-rate GPS, a map matching algorithm based on conditional random fields (CRF) and route preference mining is proposed. In this algorithm, road offset distance and the temporal-spatial relationship between the sampling points are used as features of GPS trajectory in CRF model, which can utilize the advantages of integrating the context information into features flexibly. When the sampling rate is too low, it is difficult to guarantee the effectiveness using temporal-spatial context modeled in CRF, and route preference of a driver is used as replenishment to be superposed on the temporal-spatial transition features. The experimental results show that this method can improve the accuracy of the matching, especially in the case of low sampling rate.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.