Papers
Topics
Authors
Recent
2000 character limit reached

Map Matching based on Conditional Random Fields and Route Preference Mining for Uncertain Trajectories (1410.4461v2)

Published 16 Oct 2014 in cs.NI and cs.LG

Abstract: In order to improve offline map matching accuracy of low-sampling-rate GPS, a map matching algorithm based on conditional random fields (CRF) and route preference mining is proposed. In this algorithm, road offset distance and the temporal-spatial relationship between the sampling points are used as features of GPS trajectory in CRF model, which can utilize the advantages of integrating the context information into features flexibly. When the sampling rate is too low, it is difficult to guarantee the effectiveness using temporal-spatial context modeled in CRF, and route preference of a driver is used as replenishment to be superposed on the temporal-spatial transition features. The experimental results show that this method can improve the accuracy of the matching, especially in the case of low sampling rate.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.