Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

A Review of CUDA, MapReduce, and Pthreads Parallel Computing Models (1410.4453v1)

Published 16 Oct 2014 in cs.DC

Abstract: The advent of high performance computing (HPC) and graphics processing units (GPU), present an enormous computation resource for Large data transactions (big data) that require parallel processing for robust and prompt data analysis. While a number of HPC frameworks have been proposed, parallel programming models present a number of challenges, for instance, how to fully utilize features in the different programming models to implement and manage parallelism via multi-threading in both CPUs and GPUs. In this paper, we take an overview of three parallel programming models, CUDA, MapReduce, and Pthreads. The goal is to explore literature on the subject and provide a high level view of the features presented in the programming models to assist high performance users with a concise understanding of parallel programming concepts and thus faster implementation of big data projects using high performance computing.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.