Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Data-Efficient Minimax Quickest Change Detection with Composite Post-Change Distribution (1410.3450v1)

Published 13 Oct 2014 in math.ST, cs.IT, math.IT, math.PR, and stat.TH

Abstract: The problem of quickest change detection is studied, where there is an additional constraint on the cost of observations used before the change point and where the post-change distribution is composite. Minimax formulations are proposed for this problem. It is assumed that the post-change family of distributions has a member which is least favorable in some sense. An algorithm is proposed in which on-off observation control is employed using the least favorable distribution, and a generalized likelihood ratio based approach is used for change detection. Under the additional condition that either the post-change family of distributions is finite, or both the pre- and post-change distributions belong to a one parameter exponential family, it is shown that the proposed algorithm is asymptotically optimal, uniformly for all possible post-change distributions.

Citations (28)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.