Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Optimal steering of a linear stochastic system to a final probability distribution, part II (1410.3447v1)

Published 13 Oct 2014 in cs.SY, math-ph, and math.MP

Abstract: We consider the problem of minimum energy steering of a linear stochastic system to a final prescribed distribution over a finite horizon and to maintain a stationary distribution over an infinite horizon. We present sufficient conditions for optimality in terms of a system of dynamically coupled Riccati equations in the finite horizon case and algebraic in the stationary case. We then address the question of feasibility for both problems. For the finite-horizon case, provided the system is controllable, we prove that without any restriction on the directionality of the stochastic disturbance it is always possible to steer the state to any arbitrary Gaussian distribution over any specified finite time-interval. For the stationary infinite horizon case, it is not always possible to maintain the state at an arbitrary Gaussian distribution through constant state-feedback. It is shown that covariances of admissible stationary Gaussian distributions are characterized by a certain Lyapunov-like equation. We finally present an alternative to solving the system of coupled Riccati equations, by expressing the optimal controls in the form of solutions to (convex) semi-definite programs for both cases. We conclude with an example to steer the state covariance of the distribution of inertial particles to an admissible stationary Gaussian distribution over a finite interval, to be maintained at that stationary distribution thereafter by constant-gain state-feedback control.

Citations (155)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.