Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Fast and Memory Efficient Sparse Solver with Applications to Finite-Element Matrices (1410.2697v2)

Published 10 Oct 2014 in cs.NA and math.NA

Abstract: In this article, we introduce a fast and memory efficient solver for sparse matrices arising from the finite element discretization of elliptic partial differential equations (PDEs). We use a fast direct (but approximate) multifrontal solver as a preconditioner, and use an iterative solver to achieve a desired accuracy. This approach combines the advantages of direct and iterative schemes to arrive at a fast, robust and accurate solver. We will show that this solver is faster ($\sim$ 2x) and more memory efficient ($\sim$ 2--3x) than a conventional direct multifrontal solver. Furthermore, we will demonstrate that the solver is both a faster and more effective preconditioner than other preconditioners such as the incomplete LU preconditioner. Specific speed-ups depend on the matrix size and improve as the size of the matrix increases. The solver can be applied to both structured and unstructured meshes in a similar manner. We build on our previous work and utilize the fact that dense frontal and update matrices, in the multifrontal algorithm, can be represented as hierarchically off-diagonal low-rank (HODLR) matrices. Using this idea, we replace all large dense matrix operations in the multifrontal elimination process with $O(N)$ HODLR operations to arrive at a faster and more memory efficient solver.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.