Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Linear complexity problems of level sequences of Euler quotients and their related binary sequences (1410.2182v1)

Published 20 Sep 2014 in math.NT and cs.CR

Abstract: The Euler quotient modulo an odd-prime power $pr~(r>1)$ can be uniquely decomposed as a $p$-adic number of the form $$ \frac{u{(p-1)p{r-1}} -1}{pr}\equiv a_0(u)+a_1(u)p+\ldots+a_{r-1}(u)p{r-1} \pmod {pr},~ \gcd(u,p)=1, $$ where $0\le a_j(u)<p$ for $0\le j\le r-1$ and we set all $a_j(u)=0$ if $\gcd(u,p)\>1$. We firstly study certain arithmetic properties of the level sequences $(a_j(u)){u\ge 0}$ over $\mathbb{F}_p$ via introducing a new quotient. Then we determine the exact values of linear complexity of $(a_j(u)){u\ge 0}$ and values of $k$-error linear complexity for binary sequences defined by $(a_j(u))_{u\ge 0}$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.