Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

An improved multimodal PSO method based on electrostatic interaction using n- nearest-neighbor local search (1410.2056v1)

Published 8 Oct 2014 in cs.AI

Abstract: In this paper, an improved multimodal optimization (MMO) algorithm,called LSEPSO,has been proposed. LSEPSO combined Electrostatic Particle Swarm Optimization (EPSO) algorithm and a local search method and then made some modification on them. It has been shown to improve global and local optima finding ability of the algorithm. This algorithm useda modified local search to improve particle's personal best, which used n-nearest-neighbour instead of nearest-neighbour. Then, by creating n new points among each particle and n nearest particles, it tried to find a point which could be the alternative of particle's personal best. This method prevented particle's attenuation and following a specific particle by its neighbours. The performed tests on a number of benchmark functions clearly demonstrated that the improved algorithm is able to solve MMO problems and outperform other tested algorithms in this article.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.