Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Interference Effects in Quantum Belief Networks (1409.8470v1)

Published 30 Sep 2014 in cs.AI

Abstract: Probabilistic graphical models such as Bayesian Networks are one of the most powerful structures known by the Computer Science community for deriving probabilistic inferences. However, modern cognitive psychology has revealed that human decisions could not follow the rules of classical probability theory, because humans cannot process large amounts of data in order to make judgements. Consequently, the inferences performed are based on limited data coupled with several heuristics, leading to violations of the law of total probability. This means that probabilistic graphical models based on classical probability theory are too limited to fully simulate and explain various aspects of human decision making. Quantum probability theory was developed in order to accommodate the paradoxical findings that the classical theory could not explain. Recent findings in cognitive psychology revealed that quantum probability can fully describe human decisions in an elegant framework. Their findings suggest that, before taking a decision, human thoughts are seen as superposed waves that can interfere with each other, influencing the final decision. In this work, we propose a new Bayesian Network based on the psychological findings of cognitive scientists. We made experiments with two very well known Bayesian Networks from the literature. The results obtained revealed that the quantum like Bayesian Network can affect drastically the probabilistic inferences, specially when the levels of uncertainty of the network are very high (no pieces of evidence observed). When the levels of uncertainty are very low, then the proposed quantum like network collapses to its classical counterpart.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube