Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient multivariate sequence classification (1409.8211v2)

Published 29 Sep 2014 in cs.LG

Abstract: Kernel-based approaches for sequence classification have been successfully applied to a variety of domains, including the text categorization, image classification, speech analysis, biological sequence analysis, time series and music classification, where they show some of the most accurate results. Typical kernel functions for sequences in these domains (e.g., bag-of-words, mismatch, or subsequence kernels) are restricted to {\em discrete univariate} (i.e. one-dimensional) string data, such as sequences of words in the text analysis, codeword sequences in the image analysis, or nucleotide or amino acid sequences in the DNA and protein sequence analysis. However, original sequence data are often of real-valued multivariate nature, i.e. are not univariate and discrete as required by typical $k$-mer based sequence kernel functions. In this work, we consider the problem of the {\em multivariate} sequence classification such as classification of multivariate music sequences, or multidimensional protein sequence representations. To this end, we extend {\em univariate} kernel functions typically used in sequence analysis and propose efficient {\em multivariate} similarity kernel method (MVDFQ-SK) based on (1) a direct feature quantization (DFQ) of each sequence dimension in the original {\em real-valued} multivariate sequences and (2) applying novel multivariate discrete kernel measures on these multivariate discrete DFQ sequence representations to more accurately capture similarity relationships among sequences and improve classification performance. Experiments using the proposed MVDFQ-SK kernel method show excellent classification performance on three challenging music classification tasks as well as protein sequence classification with significant 25-40% improvements over univariate kernel methods and existing state-of-the-art sequence classification methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.