Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Autoencoder Trees (1409.7461v1)

Published 26 Sep 2014 in cs.LG and stat.ML

Abstract: We discuss an autoencoder model in which the encoding and decoding functions are implemented by decision trees. We use the soft decision tree where internal nodes realize soft multivariate splits given by a gating function and the overall output is the average of all leaves weighted by the gating values on their path. The encoder tree takes the input and generates a lower dimensional representation in the leaves and the decoder tree takes this and reconstructs the original input. Exploiting the continuity of the trees, autoencoder trees are trained with stochastic gradient descent. On handwritten digit and news data, we see that the autoencoder trees yield good reconstruction error compared to traditional autoencoder perceptrons. We also see that the autoencoder tree captures hierarchical representations at different granularities of the data on its different levels and the leaves capture the localities in the input space.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.