Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Heterogeneous Metric Learning with Content-based Regularization for Software Artifact Retrieval (1409.7165v1)

Published 25 Sep 2014 in cs.LG, cs.IR, and cs.SE

Abstract: The problem of software artifact retrieval has the goal to effectively locate software artifacts, such as a piece of source code, in a large code repository. This problem has been traditionally addressed through the textual query. In other words, information retrieval techniques will be exploited based on the textual similarity between queries and textual representation of software artifacts, which is generated by collecting words from comments, identifiers, and descriptions of programs. However, in addition to these semantic information, there are rich information embedded in source codes themselves. These source codes, if analyzed properly, can be a rich source for enhancing the efforts of software artifact retrieval. To this end, in this paper, we develop a feature extraction method on source codes. Specifically, this method can capture both the inherent information in the source codes and the semantic information hidden in the comments, descriptions, and identifiers of the source codes. Moreover, we design a heterogeneous metric learning approach, which allows to integrate code features and text features into the same latent semantic space. This, in turn, can help to measure the artifact similarity by exploiting the joint power of both code and text features. Finally, extensive experiments on real-world data show that the proposed method can help to improve the performances of software artifact retrieval with a significant margin.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.