Papers
Topics
Authors
Recent
2000 character limit reached

The Application of Differential Privacy for Rank Aggregation: Privacy and Accuracy (1409.6831v1)

Published 24 Sep 2014 in cs.AI and cs.CR

Abstract: The potential risk of privacy leakage prevents users from sharing their honest opinions on social platforms. This paper addresses the problem of privacy preservation if the query returns the histogram of rankings. The framework of differential privacy is applied to rank aggregation. The error probability of the aggregated ranking is analyzed as a result of noise added in order to achieve differential privacy. Upper bounds on the error rates for any positional ranking rule are derived under the assumption that profiles are uniformly distributed. Simulation results are provided to validate the probabilistic analysis.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.