Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 93 tok/s
Gemini 3.0 Pro 48 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 201 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bayesian Error Based Sequences of Mutual Information Bounds (1409.6654v1)

Published 23 Sep 2014 in cs.IT and math.IT

Abstract: The inverse relation between mutual information (MI) and Bayesian error is sharpened by deriving finite sequences of upper and lower bounds on MI in terms of the minimum probability of error (MPE) and related Bayesian quantities. The well known Fano upper bound and Feder-Merhav lower bound on equivocation are tightened by including a succession of posterior probabilities starting at the largest, which directly controls the MPE, and proceeding to successively lower ones. A number of other interesting results are also derived, including a sequence of upper bounds on the MPE in terms of a previously introduced sequence of generalized posterior distributions. The tightness of the various bounds is illustrated for a simple application of joint spatial localization and spectral typing of a point source.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.