Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Bayesian Error Based Sequences of Mutual Information Bounds (1409.6654v1)

Published 23 Sep 2014 in cs.IT and math.IT

Abstract: The inverse relation between mutual information (MI) and Bayesian error is sharpened by deriving finite sequences of upper and lower bounds on MI in terms of the minimum probability of error (MPE) and related Bayesian quantities. The well known Fano upper bound and Feder-Merhav lower bound on equivocation are tightened by including a succession of posterior probabilities starting at the largest, which directly controls the MPE, and proceeding to successively lower ones. A number of other interesting results are also derived, including a sequence of upper bounds on the MPE in terms of a previously introduced sequence of generalized posterior distributions. The tightness of the various bounds is illustrated for a simple application of joint spatial localization and spectral typing of a point source.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)